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Abstract

The paper considers three-dimensional interface inclusion problems. The axisymmetric elastostatics problem of a
rigid circular inclusion at the interface between two perfectly bonded dissimilar elastic half spaces is analyzed. Based on
the representations of displacements and stresses in terms of Love’s strain potential and the Hankel transform tech-
nique, the mixed boundary value problem associated with a rigid circular inclusion at the interface reduces to a pair of
simultaneous integral equations for the stress jumps across the inclusion, which are further transformed to a single
singular integral equation. For the case of uniform axial and radial tensions at infinity, the asymptotic stresses near the
inclusion front are obtained and they exhibit the oscillatory singularity. Meanwhile, the magnitude of the singularity for
the interface inclusion depends on the material constants of the upper and lower half spaces, the dependence of sin-
gularity coefficients on material constants for interface inclusion problems, however, is different from that for interface
crack problems. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The performance of materials is altered by the presence of inhomogeneities such as cracks, cavities, and
inclusions, etc. (Mura, 1982). As well known, cracks contained in a medium usually weak the mechanical
reliability of materials. For a rigid flat inclusion embedded in a medium, it can also result in the concen-
tration of stresses and further affect the behavior of materials. From the viewpoint of inhomogeneities
in solids, cracks and rigid inclusions are the two extreme cases of an inhomogeneity, namely, ¢ — 0 for
a crack, and u — oo for a rigid inclusion, where u is the shear modulus of the inhomogeneity phase.
Therefore, the problems involving inhomogeneities including cracks and inclusions in an elastic material
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have become the subject of extensive investigations in recent years due to the importance of the mechanical
reliability of materials in critical design. So the study of elastic field disturbed by a rigid inclusion is as
important as that by a crack in medium. A review given by Mura (1988) contains a large amount of lite-
rature dealing with inclusion problems.

On the other hand, with the wide application of composite materials, the problems of a bimaterial
interface have received much attention in recent years. Considerable researches focus on interface crack
problems including two-dimensional and three-dimensional problems. In comparison with interface crack
problems, the study of interface inclusion problems, however, is rather limited, and most investigations in
this area is mainly concentrated on two-dimensional problems, i.e. a rigid line inclusion is placed at the
interface of a bimaterial consisting of two half planes of dissimilar elastic media. For example, the
characteristics of stress field for rigid line inclusions at the interface of two perfectly bonded dissimilar
semi-infinite elastic media has been investigated by some researchers (see e.g. Dundurs and Markenscoff,
1989; Markenscoff et al., 1994; Markenscoff and Ni, 1996; Ballarini, 1990; Wu, 1990; Jiang and Liu, 1992;
Asundi and Deng, 1995; Boniface and Hasebe, 1998; etc.). Ballarini (1990) considered the problem of a
rigid line inclusion at the interface of a bimaterial subjected to constant loads at infinity, and derived
the analytical solution and stress singularity coefficients at the rigid inclusion tip using the method of
complex potential. A similar problem to the above has also been studied by Jiang and Liu (1992) solv-
ing the Riemann-Hilbert problem derived from a rigid line inclusion at a bimaterial interface. For
the cases of uniform biaxial tension and of inclusion loaded by concentrated forces or moment, Dundurs
and Markenscoff (1989) and Markenscoff et al. (1994) analyzed the problems of interface anticracks, or
rigid inclusions, of a bimaterial and obtained the Green’s functions in explicit form by means of solv-
ing the system of governing coupled integral equations. Recently, two-dimensional rigid interface line
inclusion problems have been further investigated by Markenscoff and Ni (1996). The two-dimensional
elasticity problem of a rigid elliptic inclusion, instead of a rigid line inclusion, at the interface between
two dissimilar isotropic elastic half planes has been presented and solved by Boniface and Hasebe (1998)
using the method of Muskhelishvili’s complex potential and the conformal mapping technique. Work
on anisotropic rigid interface line inclusion can be found in Wu (1990) and Asundi and Deng
(1995).

In comparison with the two-dimensional interface inclusion problems, three-dimensional interface in-
clusions are more practical and more important from an engineering viewpoint. However, to the best of
the author’s knowledge, few solutions are available for three rigid interface inclusion problems, although
a number of solutions for three-dimensional problems in a homogeneous elastic material rather than
interface inclusion problems and interface crack problems (see e.g. Qu and Xue, 1998; Rao and Has-
ebe, 1995; Nakamura, 1991; Saxena and Dhaliwal, 1990; Kassir and Bregman, 1972; Wills, 1972; Erdo-
gan, 1965; etc.) have been reported. Selvadurai (1985) developed a set of bounds which can be used to
estimate the asymptotic rotational stiffness of a rigid elliptical disc inclusion at the interface of a bi-
material.

This paper considers three-dimensional rigid interface inclusion problems. The axisymmetric elasto-
statics problem of a rigid circular inclusion at the interface between two perfectly bonded dissimilar iso-
tropic elastic half spaces is analyzed. This paper is organized as follows: The basic theory for solving a class
of axisymmetric elastostatics problem is outlined in Section 2. In Section 3, superposition is utilized to
separate the problem under consideration into two auxiliary problems: one relating to a uniform elastic
field and the other corresponding to a singular elastic field. In Section 4, by using the Hankel transform, we
reduce the mixed boundary value problem involving a rigid circular interface inclusion to a pair of si-
multaneous integral equations for the stress jumps across the inclusion, which are further rewritten as a
single singular integral equation. In Section 5, for the case of uniform axial and radial tensions at infinity,
the asymptotic stress field near the inclusion front at the inclusion surfaces is obtained. The results indicate



X.-F. Li, T.-Y. Fan | International Journal of Solids and Structures 38 (2001) 8019-8035 8021

t t

),V A rigid circular interface inclusion
-« 1-¥1  Ang t L 5
material 1 ///
© ©
T o) / Faiy
Hy. vy z=0
— material 2
-
Tan2)

v 7

w

O

Fig. 1. A rigid circular inclusion at the interface of a bimaterial.

that the stresses exhibit the oscillatory singularity similar to that for an interface crack. In Section 6, two
particular cases are considered, and conclusion are made.

2. Basic theory

Consider a class of axisymmetric elastostatics problems associated with a rigid circular inclusion at the
interface between two perfectly bonded dissimilar elastic half spaces, as shown in Fig. 1. In order to solve
axisymmetric elastostatics problems, it is convenient to adopt a cylindrical coordinate system (r, 6,z) with
the origin at the center of the inclusion. Let the inclusion be situated at the region 0 <r<a, 0 <0< 2n and
z =0, and medium I with moduli g,, v; and medium II with moduli p,, v, occupy the upper and lower half
spaces, S| and S,, where y;, v; (i = 1,2) denote the shear modulus and Poisson’s ratio, respectively.

Based on a formulation from Love’s strain potential approach, the displacements in a bimaterial free of
body forces may be expressed in terms of the derivatives of ¢;)(r,z) and ¢, (r, z), which correspond to the
potentials for the upper and lower half spaces, respectively, viz.

62(/’ i
o (r,2) = =522, (1)
az(ﬂ i
Uz (i) (r,z) =2(1— Vi)vz(#’(f) - ?2()7 (2)
where

? 10 @&

2 [ — R — —_
v _6r2+r6r+622 (3)

is the Laplacian operator referred to a cylindrical coordinate system (r,6,z), the subscript (i), i = 1,2,
denotes “in region §;”, and the potentials ¢, are governed by the bi-harmonic equation

V2 Vz(p<,) = 0. (4)
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Under such circumstances, the stresses may be given in terms of ¢, as follows:

0 [ 0 @

Grr(i) (r, Z) = 2:“1& V,‘VZQD(I«) — a]/‘2(>‘| ; (5)
o[ oo 1 99

0—90(1)(”a Z) — 2,“;& V,v (i) — r or ) (6)
o 9

O—zz(z)(ra Z) - 2.“1& (2 - Vf)vz(/)(l) - @z;) ) (7)
o[ ) Fo

GZf(l)(raZ) 2/11-5 1=V Py — 022 (8)

3. Statement of the problem

In this section, we are concerned with the problem of a rigid circular inclusion at the interface of a
bimaterial subjected to constant stresses along the z-axis (axial) direction and along the radial direction at
infinity. Hence the boundary conditions at infinity can stated below

0.(rz) =03, o.0)(rz) = Ty On(2)(r,z) = T2 72+ 22 — oo. 9)
Clearly, it follows from the linearity of the problem that the problem under consideration can be solved
by superposition. In other words, each of the field variables can be separated into two parts: (a) the ho-
mogeneous elastic field for a bimaterial with no inclusion subjected to the same loads as expressed by Eq.
(9) at infinity, and (b) the singular elastic field for a bimaterial with an interface inclusion for which the
elastic displacements along the inclusion are prescribed as the negative of those produced by the former.
Therefore, one can write the potential ¢, as

where a variable with the superscript H or S denotes the corresponding one in the homogeneous or singular
elastic fields, respectively.
For the problem (a), using the continuity conditions along the bimaterial interface:

sy (r,0%) = uly) (r,07), r=0, (11)
”21)(’”7 0") = uf,{a)(r7 07), r=0, (12)
) (r,07) = ally) (r,07), >0, (13)
‘73(1)(”a 0t) = 02(2)(1@ 07), r=0, (14)

where the superscript +(—) represents the limit as the interface is approached from the upper(lower) half-
space S (S,), we easily get that the potentials in this case are given by

1
H__ - _ y\ A2 _ NA01,3 _ v )0 4y 001552
(p(;) - 12#1(1 i Vz‘) {[2(2 VI)O-rr(i) + (1 2V,)O'ZZ }Z 3[(1 Vl)arr(i) V,O'ZZ]ZF } (15)

and that the far-field stresses obey the following relation
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As a result, substitution of the potentials (15) into Egs. (1) and (2) yields the displacements at the in-
terface

g _#2(1 +vo) (1 — ) . V2 — Vi + Viva(py — fhy) o (16)

le)(r,0+) :”?(2)(’307) =0, r=0, (17)

H + H —\ _Tbr

ur(1>(}",0 ):ur(2>(l",0 ):7a I”ZO, (18)
with

; :(l—l—icl)aff(l)—@—kl)ajo (19

' (7= K1) 7

where x; = 3 — 4v;. In particular, if the upper and lower half spaces are of the same material, it means that
a rigid circular inclusion is embedded in an infinite elastic solid. In this case, the radial displacement
component from Eq. (18) reduces to

1
C2u(1+v)
For the problem (b), singular elastic field is produced by the presence of a rigid inclusion at the interface.

In fact, of practical importance is this case, and the disturbed elastic field may be determined from the
following mixed boundary conditions:

ufl(r, 0) [(1=v)a> +veX]r, r=0. (20)

uzs(l)(r7 0") = qu(Z)(r7 07), ”f(l)(”a 0") = uf(z)(”a 07), r=0, (21)

stz(l)(r7 0") = 0282(2)(r7 07), Uzsr(1)(”> 0") = O-zsr(Z)(r7 07), r>a, (22)

Wiy (r,07) = =f(r),  uy,)(r,07) = —g(r),  0<r<a, (23)
where f'(r) and g(r) are given by Eqgs. (17) and (18), respectively, i.e.

) =0, &) ="2. (24)

As an unbounded region is under consideration, the regularity conditions at infinity

S (rz) =0, & (rz)—0, 2422 — 0 25
(@) 0

1 1

must be supplemented.

4. Governing equation

In order to solve the problem (b), it is convenient to adopt the Hankel transform technique. Following
Sneddon (1951), define the mth order Hankel transform

Holp] = /0 h ro (), (ré)dr, (26)

where J,, is the Bessel function of the first kind of order m. The zeroth order Hankel transform with respect
to r of the bi-harmonic equation (4) leads to an ordinary differential equation for 7 [(p(sl.)] (¢,z). On account
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of the regularity conditions at infinity, unbounded terms are cast away and the general solutions are de-
termined. Further, the inverse Hankel transform of the general solutions will give that the potentials can be
expressed as the following integrals

q)(Sl)(V,Z) = / é_z(Al + 2V1Bl —&—Blzé)e’zéJo(rﬁ) d@ z = 07 (27)
0

(p(sz) (r,z) = / E7(Ay + 2v,By — ByzE)e o (ré)dé,  z<0, (28)
0

where 4; = 4,(¢) and B; = B;(&), i = 1,2, are new unknown functions in & to be determined from given
boundary conditions (21)—(23). For convenience, in what follows the superscript S corresponding the
singular elastic field is omitted and we restrict our attention to the problem (b). In fact, the difference
between two elastic fields given by the potentials q)(sl.) (r,z) and @;(r,z) is a homogeneous elastic field, so it
does not disturb the distribution of stresses. Substitution of the expression for ¢ (r,z) given by Eq. (27)
into Egs. (1), (2), (7) and (8) yields the expressions for the displacements and stresses in the upper half space
as follows:

gy = — /0 Ty 4 21— By + Bizde Sy (rE)dE, 230, (29)
Uy = — /O Ty = (1= 20)By + Bizdle = (rE)dE, 230, (30)
Oty = 244 /Ox E(A) + By + Biz&)e = Jy(ré)dé, z=0, (31)
o) = 24 /0 N E(A) + BizE)e I (ré)dé, z=0. (32)

Similarly, the expressions for the displacements and stresses in the lower half space are obtainable by
inserting ¢, (r,z) given by Eq. (28) into Egs. (1), (2), (7) and (8). They are

U = — /0 OO[Az +2(1 — 3)By — ByzEleJo(ré)dé, z<0, (33)
Upa) = /0 OO[AQ — (1 = 2%)B, — Byzé]eJy (ré)dé, z<0, (34)
0oy = — 24 /0 N E(Ay + By — Byzé)e* o (ré)dé,  z<0, (35)
0a) = 21t /0 " E(Ay — Brzé)eJy (ré)dé,  z<0. (36)

Substituting Egs. (29), (30), (33) and (34) into Eq. (21) leads to a system of linear algebraic equations for
A; and B;, and solving this system for 4, and B, in terms of 4, and B, yields

_—2A1+(K1K2—1)Bl B _2A1+Bl
- ) 2 =7

A
2 2K2 K2

(37)

where 1; = 3 — 4v,.
To reduce the remaining mixed boundary conditions (22) and (23) to a system of integral equations,
from Egs. (29) and (30) for z = 0 we have
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w(r) = — / ) +2(1 = v)Bio(rE) dE, 7 >0, (38)
0
u.(r) = —/ [A4; — (1 = 2v))B i1 (#E)dE, r =0, (39)
0

where u.(r) and u,(r) denote the axial and radial components of displacement vector at the interface, z = 0,
respectively. It is convenient for later use to introduce the stress jumps across the interface,

Ao-zz(r) = Jzz(l)(rv 0+) — 0z(2) (I", 07); rz Oa (40)

Ao-zr(r) = O-zr(l)(ra 0+) - O-zr(Z)(ra 07)a rz 0. (41)
Then it immediately follows from the boundary conditions (22) that

Ao.(r) =0, r>a, (42)

Ao, (r)=0, r>a. (43)

Now, inserting Eq. (37) into the representations of stresses at the interface and subtracting Egs. (35) and
(36) from Egs. (31) and (32) for z = 0, respectively, yield

<11
Ao (r) = / [y (24, + By) +— ” Bl] El(ré)dé, r=0, (44)

0 2

~ 1
Ao, (r) = / [—(2141 +By) — ﬂBl] ENL(ré)de, r=0, (45)

0 72 A
where
K1 L%]

=, = 46
n Hy + Ky "2 My + Koy (46)

Taking the inverse Hankel transform of Egs. (44) and (45) and solving the resulting linear equations for
Ay and By in terms of the stress jumps Ao..(r) and Ao, (r), we find 4, and B; to be

1 A a 1 a
A =—|7,— n / Ao, (r)rJo(ré)dr+ =y, — n / Ao, (r)rJy (&) dr, (47)
4 K1 0 4 K1 0
B, 2K1 / Ao (r)rJy(ré) drfz—Kl/ Ao, (r)rJy(ré)d (48)

Next, we will eliminate 4, and B; from Egs. (38), (39) and Eqgs. (47), (48). To this end, multiply Eq. (38)
by —r(x* — r2)7<1/ 7 then integrate with respect to » between the limits 0 and x, and change the order of
integration at the right-hand side of Eq. (38). Using the known result (A.5) we get

Y ru(r) . ~ _ sin(x¢)
md _/0 [A1 +2(1 = v1)B] ¢ dé. (49)

Differentiating Eq. (49) with respect to x, then substituting Eqs. (47) and (48) into Eq. (49), and using the
known results (A.1) and (A.3), we obtain
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d [ ru(r) i+ [ rAcs(r) Y1 — Vs { * Ao.,(r)
- dr = dr + X —_dr
dx Jo Vx2—12 4 x V2 —x? 4 x2 —r?

_ /0 Ao, (r) dr] . x>0. (50)

Similarly, for the representation of u,(r) given by Eq. (39), multiplying Eq. (39) by r, then differentiating
Eq. (39) with respect to r, and finally dividing Eq. (39) by —r, we find

_%[}"ur(?‘)]/ = /OOO[A] — (1 — 2V1)B]}f]0(i’f)df, (51)

where the prime denotes the differentiation with respect to r, and in deriving the above relation we have
used Eq. (A.14).

Just as the derivation of the relationship (50), in view of Egs. (A.5), (A.2) and (A.4) an entirely analogous
procedure reduces Eq. (51) to the following relationship:

* Jru(r)] =0 [ rAc.(r) oty [* Acs(r)
md === | xz—rzdr+ X i —rz_xzdr’ x=0. (52)

Therefore, we obtain the relationships between the displacements at the interface and the stress jumps
across the interface, i.e. they are governed by Egs. (50) and (52). It is well known the fact that for the
axisymmetric problem of a rigid interface inclusion considered in this paper, the displacements u.(r) and
u,(r) at the region 0 <r < a are prescribed, given by Eq. (23). Consequently, from Egs. (50) and (52) we
arrive at the pair of simultaneous governing integral equations for the stress jumps across the interface as
follows:

* rAa..(r) Y Ao, (r _
: \/T—xzdr“rﬂ[ md —/ AO'Z, :| —bz(x), 0<x<a, (53)
rAo..(r ¢ Ao, (r) B
_ﬁ/ \/________r__ i ﬁ dr = br(x), 0 <x <a, (54)
where
Nt NN
e N (55)
and
d [ ru(r) * Jru(r)]f
bzx:—— b.(x) = — ——dr. 56
) el b= [ (56)

Evidently, for the r1g1d inclusion problem under consideration, it is easily seen from Eqgs. (23) and (24)
that

b.(x) =0, b,(x)=bx. (57)
Hence, once the stress jumps across the interface Ao..(r) and Ag.,(r) are determined, unknown functions

Ay and By, and further 4, and B,, can be found from Egs. (47) and (48), and Eq. (37), respectively.

To solve the pair of Egs. (53) and (54), a further simplification is achieved by setting
¢ rAo(r)
],.2 _ xZ

dr=o¢), 0<x<a (58)

and
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¢ Ac,.(r)
x V 2 —x?
Under these circumstances, we multiply Egs. (58) and (59) by x(x* — pz)_l/ ?_ and integrate with respect to
x between the limits p and a (p < a). Reversing the order of integration at the left-hand side and employing

the equality (A.6) we can express the stress jumps across the interface Ao..(r) and Ag..(r) in terms of ¢(r)
and #(r), respectively, in the form

dr=n(), 0<x<a. (59)

o 2d [ xe(kx)
AO'ZZ(I")——EE : \/ﬁdx, 0<x<a, (60)
2d [
poulr) =24 | % , 0<x<a, (61)

where in the last step in deriving the above results, we have replaced p with r for convenience.
Now, inserting Eq. (60) into the first integral at the left-hand side of Eq. (54), we find

Y rAo.( 1 1 1
ZZ - _ 2
V2 _,,2 B qD<S)[s+x s—x] ds, (62)

the derivation of which is given in Appendix B. Here, the integral involving the second term in the bracket is

understood in the sense of the Cauchy principal value.
Similarly, from Eq. (61) we can deduce the following relationship:

Ao (r e 1 1
m ) n(s)[s—kx_s—x]ds' (63)

F urthermore, we introduce two new functions, denoted as ¢(x) and (x), as the even and odd extension
of functions ¢(x) and xn(x), respectively, namely,

oo={3f, 2525k

_ Janx), 0<x<aq,
V) = {xn(x), —a <x<0. (65)
Thus, the first integral in the left-hand side of Eq. (54) can be represented in the form
X A - 1 a
L(r)dr:—f/ ) 4 —a<r<a (66)
0 Vx2—r? TJa85—X
Moreover,

/OaAazr(r)dr:_%/oa<d ‘ xn(_rz ) /w (7

follows from Eq. (61) and

ox%d’:%/oa”(”isix‘sixi“:‘%/: s (68)

follows from Egs. (63) and (65). Hence, the terms in the bracket at the left-hand side of Eq. (53) becomes

* Aa.(r) “ LY
A \/ﬁdr—/o AO'Z,,(I”)dI’——E 7as_de, —a <x<a. (69)
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By virtue of Egs. (58), (59) and (66) and (69), the system of Eqgs. (53) and (54) for Ac_.(r) and Ao, (r) are
then transformed into the system of coupled singular integral equations for ¢(x) and ¥(x):

op(x) —g _a % ds =b.(x), —a<x<a, (70)
é/g %ds—i—oa//(x) =b,(x), —a<x<a, (71)

where b.(x) and b,(x) for 0 <x < a are given by Eq. (57), together with Eq. (19), and b.(x) and b,(x) for
—a < x<0 are defined as b,(—x) and —b,(—x), respectively.

By introducing a complex function y(x) = ¢(x) + iy(x), i = v/—1, the system of equations for ¢(x) and
Y(x) can by rewritten as a single singular integral equation for y(x)

B[ xls)
= | Fds=bk), - , 2
oy (x) i) s—x s =b(x) a<x<a (72)
where b(x) = b.(x) +1b,(x). Eq. (72) is a better-studied standard singular integral equation with the Cauchy
kernel, which can be solved analytically. Since « and f are constants, given by Eq. (55), using the technique,

outlined in Muskhelishvili (1953) and Kanwal (1971), we, after some manipulations, obtain the solution of
Eq. (72) as

X(x)ﬁ(erZayoi)(Z;i) O, —a<x<a, (73)
or
() = =2 [x sin(2,0(x)) — 2ay, cos(23,0(x))] (74)
o2 — 2
) = 2 [ cos(230(x)) + 2a, sin(25,000), (75)
> —p
where

Lot f 1 ki + o)
vo = — 2P Ll tiom) 76
0T or N B2n ka(wy + Kip) 76

O(x) = % In

a+x’

a—Xx

5. Asymptotic stress field near the interface inclusion boundary

Since the expressions for ¢(x) and (x) have been determined in the proceeding section, all physical
quantities of concern to us can be evaluated and given in explicit form. For many purposes, it is desirable to
determine the elastic field at the interface, in particular the asymptotic stress field near the interface in-
clusion boundary, because it is crucial in studying certain features of material behavior. This is done in
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what follows. First, we give the stresses and displacements at the interface in closed form. Substituting Egs.
(47) and (48) into Egs. (31) and (32) for z = 0 yields

0'22(1)(7‘, O+) = % (VZ —|—;i—11) /Oa AO‘ZZ(S)SdS /Ooo gJo(rf)Jo(Sf) df + = Hy (q ) / Ao—zr SdS

xlmawam¢ma (78)

Gy (r,0F) = “21<y2_2> /0 Ac..(s)sds /0 éJl(ri)Jo(sé)diJr'lg(szr;ill) /O Ac.,(s)sds

x /0 h EN(ré)J (s€) dE, (79)

respectively.
In view of Egs. (A.8), (A.9), (A.12) and (A.14), we transform Eq. (78) to

U v u Y d
o) (r,07) = ?1 <y2 -|—K—11>Aazz(r) +;1 («/2 _ ) o / Aa,(s)ds

min(r,s) X2 dx
X . (80)
0 V2 —x2/s? — x?

Reversing the order of the integration appearing in the last term and using Eq. (61), we find

a min(r,s) 2 r 2 “Ag.. r
/ Ao (s)ds x*dx _ x*dx o (s)ds _ xl//(x)dx7 (81)
Vit —x2/s? —x? 0o VIP—x2J). Vs2—x2 0 Vit —x2

so by substituting Eqs. (60) and (81) into Eq. (80), the stress component o..(;)(r,0") at the interface can be
expressed in terms of ¢(x) and Y(x) as

o d o [C o xex) ([ W) -
o) (r,07) = nrdr[<y2+;cl) i 7r2dx </2 Kl) i 7\/r2__ﬁdx, r=0. (82)

Using results (A.13) and (A.10), likewise from Eq. (79) the stress component o.,(;)(r,0") at the interface
is given by

d a r
Uzr(l)<r70+) = _%a |:<V2+z—i>/ \/%dx—f' (“/2_3;—11)‘/0 \/%(]I}, 7‘>0 (83)

Proceeding as before, we can deduce that the stress component o..;2(7,07) and 6.2 (7,07) at the in-
terface. They are

M d 2\ [¢ xel) 2\ 1 W)
_ — — ) —_ - —_ = R S — 2
022 (r, 07) nrdr[(%ﬁr@) i rﬂdwr@l K2> ; erde’ r=0, (84)
omd Lo A G BN ) / (x)
)= L (0 B) [ e (n-2) [ el r=o (83

Moreover, an entirely similar procedure, considering Egs. (A.9), (A.10) and (A.11), allows us to deduce
the displacements at the interface in terms of ¢(x) and y(x) as follows:

Y1+ 72 it =N
_ >
u,(r,0) = dx + dx, =0, (86)

[:wf:ﬁ x)%ﬁfﬁ
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n—nl Y xel) dx_“/l‘f‘“/zl Toxp(x) dx

2TE rJ, \/)CZ—}"Z 27'[ r Jo ,/7-2_x2 ’

In general, the analytical expressions for the stresses and displacements at the interface can be calculated
through Egs. (82)-(87) by using the method given by Spence (1968). However, these expressions are quite
complicated and need not be written in explicit form. Next, we focus on getting the asymptotic stress field
near the interface inclusion boundary.

On the one hand, owing to

Y Y
ﬂl(VZ_K_ll> :uz(vl—K—z) (88)

by subtracting Egs. (84) and (85) from Egs. (82) and (83), respectively, we find that Egs. (60) and (61) will
be recovered respectively and it reveals the validity of the derivation of the above relations. Moreover, not
only the asymptotic field for the stress jumps Ac..(r) and Aoc,.(r) across the inclusion can be calculated
through Eqgs. (60) and (61), but also the stresses o...1)(r,0"), a.,1)(r,0%) and 6..¢2(r,07), 0.2)(r,07) at the
interface inclusion plane can be evaluated through Eqs. (82)—(85). In effect, in view of Egs. (C.1) and (C.2),
we can rewrite the stress o..;)(r,0%) along the inclusion as derivatives of related integrals from 0 to r,
namely

oan0) =+ ottt (1422 )t (1= 2) |G [ Mg vca )
1

u(r,0) = — r=0. (87)

K1 E 0 A /r2 — x2
where C is a constant, which can be uniquely determined and need not be written in explicit form since it

does not disturb the distribution of stress.
By use of integration by parts and then differentiation, we find

LAy e TL R
rdr Jo 2 —x2 0 Vr?—x?
It is seen from Egs. (74) and (75) that a straightforward evaluation of ¥/'(x) yields
, b, cos(2y,0(x 1 1
/() = SR ) ) o

az—ﬁz XxX—a x-+a

from which and Eq. (90), we get that the asymptotic stress a..(;)(r,0") at the upper surface of an inclusion
can be expressed as

r x B
O'zz(l)(r70+) = _'ulTyO |:COth(7TV0)(V2+ji_ll> - (Vz_ji—ll>:| /\/’Tq;(—z()x_a)dx+0(l), r~a,

dx. (90)

(92)

where we have neglected some lower-order terms, which does not give rise to the singularity of stress.
Substituting Eq. (74) into Eq. (92) and making use of the known results (Muskhelishvili, 1953):

TSl R eosniln) 93)
VPP —x2(x —a) * @ ’

0, WY R ) -, (94
., /rz_xz(x_a> o az — 2 )

yield the asymptotic behavior of ¢..(;)(r,0%) at the upper surface of an inclusion as follows:
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1 Y 1 Y sin(2y,0(r)) — 2y, cos(2y,0(r))
oy (r,0%) = ab.yop [E <"/2 JFK—]I) ~ (Vz - K—llﬂ . " _0,,2 0 +O(1). (95)

Performing as the above, the asymptotic expression for o.,)(r,0%) near the inclusion front along the
inclusion is given by

=) (1, 07) = aby o {% (Vz + ﬁ) L (Vz - ﬁ)} cos(2pob(r)) + 2o sin(2f(r)) | o(1). (96)

K1 o K1 az — 2

If we denote p = a — r, p being the distance from the inclusion front, we have that as p < 1,

. by 1 1 : e n
O'zz(l)(PaO+) + 10'zr(1)(/’50+) — 10 Yot |:_ (72 _._h) [ (4/2 — £>:| (1 + 2))01)/) (1/2)+ ,u(Za)(l/z) o O(l)

2 p K| o K
(97)
In a similar manner, we can derive the asymptotic stress field
_ . _ byt [ 1 Y2 1 72
zz| ) 0 zr ) 0 =———F5 |5l — —\ "~
=) (p,07) + 102 (p, 07) o AR A Ci s
x (1 + 2y,i) p~ /20 (24) /D710 4 O(1). (98)

Obviously, the normal and shear stresses near the inclusion front exhibit the oscillatory singularity,
which is divergent in both amplitude and frequency as » ~ a~ or p < 1. Moreover, subtracting Eq. (98)
from Eq. (97) results in the asymptotic expressions for the stress jumps Ac..(r) and Ao, (r) near the in-
clusion front, given by

. 'br“ . i —iy,
Ac..(p) +iAa.,(p) =" B/O (1 + 2900 p~ /2% (2a) P70 1 O(1), (99)

from which it is observed that the normal and shear stress jumps possess the same oscillatory singularity.
Here we have utilized Eq. (88) and the following equality

4 Y
H (“/2 +_l) "‘Nz()’l +_2> =2. (100)
K L%)

6. Discussion and conclusion

For a rigid circular inclusion at the interface of a bimaterial, it is readily seen that, apart from the inverse
square root singularity, the normal and shear stresses near the inclusion front at the inclusion surfaces
possess simultaneously the oscillatory singularity. It reveals that, to order to fulfill the ideal mixed
boundary conditions, there exist simultancously the pressure and traction exerted at the inclusion surfaces,
which alternating change and exhibit the oscillatory feature. Also, when the sign of normal stress varies, the
sign of shear stress on the inclusion surface changes simultaneously and the characteristic of shear stress is
similar to that of normal stress. Furthermore, from Eq. (99) the magnitude of the singularity of the stress
jumps depends on material constants of the upper and lower half spaces.

In comparison with three-dimensional interface crack problems, we see that for an interfacial circular
crack of a bimaterial, the singularity depends only on the axial tensions at infinity or the internal pressure at
the crack surfaces (Erdogan, 1965), whereas it for an interfacial rigid inclusion depends on the axial and
radial tensions at infinity. In other words, remote tensile loads parallel to and perpendicular to the inclu-
sion surface have effect on the distribution of stress field for interface inclusion problems, while remote
tensile load parallel to the crack surface has no effect on the stress distribution and remote tensile load
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perpendicular to the crack surface gives rise to the singularity of stresses near the crack front for interface
crack problems. And the bimaterial elastic constant or the oscillation factor for rigid interface inclusion
problems is

1 o+p 1 anl(Mz+K2#1)

y =—1In = , 101
0T o N Bo2n Koy + ki) (101)
while for interface crack problems (Kassir and Bregman, 1972) it is
1o+ ko
Yo = =— In—=>——"— 102
0T o M R (102)

Moreover, a comparison of the bimaterial elastic constant for three-dimensional interfacial rigid in-
clusion with its counterpart for two-dimensional case (see e.g. Ballarini, 1990; Jiang and Liu, 1992; etc.)
reveals that the dependence of bimaterial elastic constant on elastic constants of two dissimilar materials is
the same. However, it is noted that y, in some papers is replaced with —y,, and that it may be expressed in
terms of two Dundurs’s constants. For a particular case of bimaterial consisting of steel occupying the
upper half space and glass occupying the lower half space, the relevant elastic constants are £} = 3 x 107
psi, vi = 0.3, and E, = 107 psi, v, = 0.22, so we can evaluate the bimaterial elastic constant y, = 0.03953 for
interfacial rigid inclusion problems through Eq. (101) and y, = 0.06557 (Kassir and Bregman, 1972) in-
terfacial crack problems through Eq. (102).

In what follows, we consider two special cases: one corresponding to that the upper and lower half
spaces are of the same material and the other involving the problem of a rigid circular plate bonded ad-
hesively to the surface of an elastic half space subjected to pure radial tension at infinity. For the former, we
have u; = u,, vi = v,, and further y, = y,, ¢(x) =0, ¥(x) = b,x/a. Thus putting these values into the ex-
pressions for the asymptotic stress field, we see that they reduce to indeterminacies. In order to overcome
this difficult, we let yy — 0 and f§ (= y, —y,) — 0 in the asymptotic field and obtain

A (p) + 10 () = 2 p 2 20) P 4 0(1) = g S

[(1 =)oy +voXlp 2 (20) " + O(1)
(103)
in accordance with that determined directly from Egs. (60) and (61).

It indicates that for a rigid circular inclusion embedded in an infinite elastic solid subjected to constant
tension along the axial and radial directions at infinity, the normal stress is continuous across a rigid in-
clusion and the radial shear stress jump across an inclusion near the inclusion front exhibits the inverse
square-root singularity. Under such circumstances, one would expect that the radial shear stress near the
inclusion front is so high that it may result in the material cracking.

Another special case to be considered is that a rigid circular flat plate is bonded to the surface of a semi-
infinite elastic material, denoted as the upper half space, subjected to remote tension along the radial
direction at infinity. For this case, it suffices to take the value of yu, of the lower half-space material as
zero in the above-derived solution. Hence, we obtain the distribution of stress near the inclusion front
below,

oy (1 =) Ink
C2m(1 4 vy)(1 = 2vy)

. iln i(Ink —i(lnx;/m
a(p) +ia.,(p) <1 + nKl )p(1/2>+1(1n“/“>(2a)(1/2) (nwr/m) o), p=a-r<l.

(104)

Finally, we summarize the main conclusions obtained in this paper as follows:

(1) The asymptotic stress field near the interfacial rigid circular inclusion front of a bimaterial exhibits
the oscillatory singularity, apart from the inverse square-root singularity, similar to the characteristics of
stress field for an interfacial circular crack. However, the dependence relationship of the bimaterial elastic
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constant on elastic constants of two bonded dissimilar materials for interfacial rigid inclusion is different
from that for interfacial crack.

(2) The singular field of tangent and normal stresses can be induced by remote tensile loads parallel to or
(and) perpendicular to the inclusion surface for interfacial rigid inclusion problems, while it can be caused
only by remote tensile loads perpendicular to the crack surface for interfacial crack problems.

(3) For a rigid circular inclusion embedded in an infinite elastic medium, both the axial and the radial
tensions at infinity give rise to the shear stress of the inverse square-root singularity near the inclusion front
at the inclusion surfaces, while for a circular crack contained in an infinite elastic medium, only the axial
tensions at infinity can produce the normal stress of the inverse square-root singularity near the crack front.

(4) For a rigid circular plate bonded to the surface of a semi-infinite elastic material subjected to remote
tension along the radial direction at infinity, in addition to the inverse square-root singularity, stress field
underneath a rigid flat plate possesses the nature of the oscillatory singularity.
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Appendix A

Some useful results in this paper are listed below, which can be found in Gradshteyn and Ryzhik (1980),

1

o0 2 > b)
/ Jo(r&) cos(x¢)dé = { pe PO (A1)
0 0, r < x,
0 . 0, r> X,
/0 Mg sndde = T (A2)
00 L F> X,
/0 M eosxdyde =11 7 (A3)
o0 . /—f ) r> X,
/0 Ji(r€) sin(x¢)dé = { N e (A4)
T () _ sin(x¢)
v ()
" X s
/,, NN (A.6)
min(x,s) P 1 s4+x
L ===l (A7)

o / EJo(rE)Jo(pé)dE = 06(p —r), O(x) being the Dirac delta function (A.8)
0
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[ entvanwasc = 3l [Caeaneo. (A9)
00 min(r,p) ds
/0 neonpeydc = [T e e, (A.10)
> 0, p<r,
/0 Jo(ré)Ji(pé)dE = {:)’ p>r (A.11)
0o 21 min(r,p) SZdS
_ 21 A12
| neaneads=2 o [T o (A12)
d
aJo(’”f) = =&, (ré), (A.13)
d J = réJ; A.14
RG] = rE(rE). (A.14)
Appendix B

To derive Eq. (62) we perform the following transformation

" rAa.(r) P 1d r Ao (r)VE = dr
0 Vx2—r? x dx

21d d so(s)
- _2_ 2| Ve_2Z ik S
Ttxdx/o x> —r ( H__—Sz_rzds)dr

21 d P a min(x,s) 7

- ‘E;&{_"/O (p(s)ds—i-/o s¢(s)ds i W‘V
210 [ Lo 1 !

= E;[/o (P(S)ds+§/0 S(p<s)(s+x_s—x)ds]
1 [ 1 !

1 _ d
Tt/o q)(s)[s—i-x S—x] ;

where at the third step integration by parts has been used, and at the fourth step the result (A.7) has been
taken into account.

Appendix C

In order to evaluate the asymptotic stress field, it is convenient to exploit the following relationships,
given in Spence (1968):

%xcosh (70 / Sl w( >)dx——smh (1y, / fL\/éif())deo[f(x)], (C.1)
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2 costry) [ L CLINGDD) g 2 Gy [ 2000

0 72— x? r x2 —r?

dx = L[/ (x)], (C.2)

where f(x) is an even function and has no singularity over [—a, a]. Moreover, a direct evaluation of Lo[f (x)]
and L, [f (x)] by applying the residue theorem, as given in Spence (1968), for some particular functions gives
some discrete results below:

72

Lo[l] = 1, Lo[xz] 2

25, (C3)

Li[1] = 2y, LX) = yor” — %“/0(5 +273) (C4)

and so forth. It is noted that the notation here is slightly different from that used in Spence (1968).
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